If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60=2x^2+4x
We move all terms to the left:
60-(2x^2+4x)=0
We get rid of parentheses
-2x^2-4x+60=0
a = -2; b = -4; c = +60;
Δ = b2-4ac
Δ = -42-4·(-2)·60
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{31}}{2*-2}=\frac{4-4\sqrt{31}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{31}}{2*-2}=\frac{4+4\sqrt{31}}{-4} $
| 4x+44.3=187.9 | | 5(y+2)-7=5y+3 | | 2x^2+25x+4=0 | | 4x-3-3x=167-16x | | -10(x-7)=35-3(x+7) | | -t=11 | | x-3=5/8 | | 9m-8=-44 | | 7^-8y=15 | | 44x=6 | | 6.3x-3=10.9 | | -4(-5-6x)=-100 | | 6a+5=-(3-6a) | | -8x-14=50 | | 8(x-7)=3x+7 | | 6y+3y+9°=28 | | 6x+2-7x=-102-14x | | 4b+b+2b+5=40 | | 0.5x+4=0.75 | | 13x+25=246 | | 20x=-7x | | 6x-30=-8 | | (3/2x+100)+(x-20)=180 | | (3y+9)°+6y=28 | | 8+3z=2(-5z-8)+z | | 6g-7=-61 | | 8x-x+10=80 | | (13/3)n=-39 | | -1x-20=31 | | 216^-2m=36 | | 2/3n+25=n | | 0.16(y-5)+0.04y=0.10y-0.7 |